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Asymptotic State Vector Collapse and QED
Nonequivalent Representations

S. N. Mayburov1
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The state vector evolution in the interaction of a measured pure state with a
collective quantum system or a field is analyzed in a nonperturbative QED
formalism. As an example, the measurement of the electron final state scattered on
a nucleus or neutrino is considered. The produced electromagnetic bremsstrahlung
contains an unrestricted number of soft photons resulting in the total radiation
flux becoming a classical observable, which means the state vector collapse. The
evolution from the initial to the final system state is nonunitary and formally
irreversible in the limit of infinite time.

1. INTRODUCTION

The problem of the description of state vector collapse in quantum

mechanics (QM) is still open despite the multitude of proposed models

and hypotheses (D’ Espagnat, 1990). This paper analyzes some microscopic

dynamical models of the collapse, i.e., the models which attempt to describe
the interaction and the joint evolution of the measured state (particle) and

the measuring device D (detector) from first QM principles. Currently the

most popular models are the different variants of decoherence models, which

take into account also the interaction of the environment E with a very large

number of degrees of freedom (NDF) and D with small NDF (Zurek, 1982).

Yet this model meets the serious conceptual difficulties summed up in the
so-called environment observables paradox (EOP) (D’ Espagnat, 1990). For

any decoherence process at any time instant at least one observable BÃexists

whose expectation value coincides with the value for the pure state and differs

largely from the predicted value for the collapsed mixed state. Moreover, it

follows that in principle it is possible to restore the system’ s initial state,
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which contradicts with the irreversibility expected for the collapse. In general

the EOP can be regarded as an important criterion for the correctness of

measurement models.

Meanwhile it has been proposed that due to the very large internal NDF

of real macroscopic detectors, the problem can be resolved by the methods

of nonperturbat ive quantum field theory (QFT), which studies the dynamics

of systems with infinite NDF (Neeman, 1986; Fukuda, 1987). The state

manifold of such systems is described by unitarily nonequivalent (UN) repre-

sentations, which enable us to resolve the EOP, as will be demonstrated below.

The main difficulty of this approach is that it can be correctly applied

only for measurements on systems with not simply very large, but exactly

infinite NDF. Practical measuring devices must have a finite mass and energy.

Here we consider a QED bremsstrahlung model of the collapse which satisfies

all these demands simultaneously and without contradictions. It makes it

evident also that the collapse-like processes can occur not only on macroscopic

objects, but also on the fundamental level of elementary particles and fields.

Nonperturbative methods in QED have been applied successfully for

the study of the photon bremsstrahlung produced in any process of charged

particle scattering on some target. The total number of produced photons

with energy larger than k0 is proportional to e 2 ln(Pe/k0) i.e., it grows unrestrict-

edly if k0 ® 0. The perturbative Feynman diagram method by definition

works only for processes which yield small probabilities, whereas in the

present case they approximate to 1 (Itzykson and Zuber, 1980). The nonper-

turbative formalism was developed initially for the semiclassical case when

the motion of the charges is prescribed (classical) and the backreaction of

the radiated electromagnetic (em) field AÃm (x) on the charge motion can be

neglectedÐ BRF condition (Friedrichs, 1953). Consequently, in this case the

electromagnetic current J m (x) is not an operator, but is c-valued, and for

single-electron scattering its 4-dimensional Fourier transform is given by

J m (k) 5 ie 1 p m

pk
2

p8m

p8k 2 (1)

where p, p8 are the initial and final electron 4-momenta, respectively. In this

case the BRF condition means that the sum of the momentum of the radiated

photons | ks | is much less than the electron momentum transfer in the scattering

| p 2 p8 | (Akhiezer and Berestetsky, 1981).

The final em field state is found by the nonperturbative computation of

the S-matrix (S-operator). The T-product of the interaction Hamiltonian den-

sity is HÃ
i (x) 5 HÃ

em (x) 5 JÃm (x) AÃm (x). Here AÃm (x) is taken in the Feynman

gauge with indefinite metric. The commutator of HÃ
i (x), HÃ

i (x8), is a c-valued
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function. For the considered c-value currents J m which permits us to transform

the T-product into a product of the integrals over 4-space we obtain

SÃem(J ) 5 exp[i f (J ) 2 i # HÃi (x) d 4x] 5 exp[(i 2 1)V (J ) 1 U (J )] (2)

where

U (J ) 5 i o
l 5 1,2 # dkÄ [J m (k)e l

m a 1 ( l , k) 2 J *m (k)e l
m a( l , k)] (3)

and

V (J ) 5
1

2(2 p )3 # dkÄ J*m (k)J m (k)

with dkÄ 5 d 3k /k0 and a( l , k) is the photon annihilation operator (Friedrichs

1953). Below we will omit the sum over the photon polarization index l or

the polarization vectors e l m when it is unimportant. f (J ) 5 V (J ) is equal

to the quantum phase between the incoming and the outgoing states if the
relation J* m (k) 5 J m ( 2 k) is fulfilled, which is true for J m of (1). It is easy

to verify from (3) that the amplitudes of the production of photons with

different momenta k are independent. If the initial em field state is the vacuum

| g 0 & 5 | 0 & , then the average number of produced photons is dNÅ
k 5 c | J m (k) | 2

dkÄ . The action of SÃem (J ) results in divergent photon spectra dNÅ g 5 c dko/k0

for J m (k) of (1). This means that the final asymptotic state | f & includes an

infinite number of very soft photons whose total energy is finite (Jauch and

Rohrlich, 1954). At the same time it yields

| ^ f | 0 & | 5 exp[ 2 V (J )] 5 exp( 2 N g /2)

In conclusion it follows that the state | f & does not belong to the initial photon

Fock space HF, but to a different Hilbert space orthogonal to HF . So the

complete field state manifold Mc becomes nonseparable, i.e., it has to be

described by the tensor product of infinitely many Hilbert spaces H i , each
of them having its own cyclic vector-vacuum state | 0 & i. Any state of Mc is

defined by two indices | c j & i; i 5 0, corresponds to HF. Recall that any

Hermitian operator BÃ-observable transforms only vectors inside the same

Hilbert space | c 2 & i 5 BÃ| c 1 & i , and due to this, for arbitrary | c 1 & i , | c 2 & i , i Þ
l, ^ i c 1 | BÃ| c 2 & l 5 0. So, if the final state is a superposition of states from

different spaces | f & 5 | f1 & i 1 | f2 & l the interference terms (IT) for any BÃbetween
| f1 & i and | f2 & l are equal to zero. Consequently, any measurement performed

on such disjoint states cannot distinguish between the mixed and the pure

initial states, which permit us to resolve the mentioned EOP for the UN

representations. Note that the bremsstrahlung due to the classical motion of
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the charge results in a final em field state which can belong only to a single

Hilbert space Hi. Hence, to obtain the final disjoint states described by QED

the formalism must be extended to incorporate the bremsstrahlung of the
charged particle state superpositions, which will be done in this paper.

The transition from HF to some H i corresponds to the Bogolubov boson

transformation of the free field operators a ( l , k) and a +( l , k),

b ( l , k) 5 a ( l , k) 1 iJ m (k)e l
m (4)

which is nonunitary for J m (k) of (1), but conserves the vector norm ^ f | f &
5 ^ 0 | 0 & .

2. QED MEASUREMENT MODEL

As an example of the collapse induced by the bremsstrahlung, we will

consider weak scattering of an electron on a neutral particle (e.g., a neutrino)
n with mass m0; the latter in principle can be zero. We also could consider

the Coulomb scattering of an electron on a nucleus, but the infinite range of the

potential results in an infinite total cross section, which involves unnecessary

complications. We will show that the final disjoint states resulting from

photon bremsstrahlung formally indicate whether the act of scattering took
place or the particles passed unscattered and kept their initial states. At the

same time this measurement gives the electron helicity l e , because for its

left or right helicities the cross sections fulfill s L . . s R in weak interactions.

Now the electron motion is nonclassical and defined by electron field

operators. The general S-operator for HÃ
i (x) 5 HÃ

em(x) 1 HÃ
w(x) should be

determined. Here we will describe the method to calculate the matrix elements
^ f | SÃ| i & for the states of interest without writing down the S-operator in

analytical form, which would be quite difficult. These nonperturbative calcula-

tions are possible for the soft photon radiation for which the BRF condition is

fulfilled, i.e., the total em field recoil is much less than the electon momentum

transferred to n , as discussed in Section 1. This means that HÃ
em (x) does not

act on the electron field operators, conserving spin and momentum, and acts
only on em field operators (Jauch and Rohrlich, 1954). On the contrary, HÃ

w

acts only on the e, n fields, and due to this it is possible to factorize the S-

operator into SÃw and SÃem parts. SÃw defines the skeleton diagram which defines

solely the final e8, n 8 states, which are dressed by the soft radiation given

by SÃem. In turn SÃem and consequently the final radiation field depends on the

final electron momentum defined by the SÃw action on the initial state.
So we start from the calculation of the SÃw action on the initial e, n states,

neglecting HÃ
em (x). The smallness of the weak interaction constant G permits

us to calculate SÃw perturbatevely with a good accuracy, and at c.m.s. energies

below 1 TeV, which we will consider here. Its calculation can be restricted
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to the first-order diagram (Cheng and Li, 1984). Its amplitude Mw for the

weak vertex e, n ® e8, n 8 results in the spherically symmetric distribution

of e8, n 8 in the c.m.s:

Mw(e8, n 8) 5 ^ e, n | SÃ1w | e8, n 8 & 5
G

! 2
JL m J*L m 5 u8e g m (1 1 g 5)ueu8n g m (1 1 g 5)u n

(5)

From this we can find the final em field state if we know the operator SÃem

(J l) for the initial and final momentum eigenstates | e & , | e8l & . Despite the fact

that now the electron electromagnetic current is formally the operator, it was

found that SÃem (J l) is independent of the initial and final electron polarizations
and described by (2), in which current Fourier transform is equal to J l

m 5
J m (k, p, p8l) of (1), where p, p8l are the corresponding eigenvalues (Jauch and

Rohrlich, 1954). This result does not seem surprising, because such states

describe the prescribed electron motion in the phase space. Then, as follows

from the superposition principle, if the final momentum eigenstate of the
electron | e8l & has the amplitude cl , the final system state is

| c f & 5 o cl | e8l & | n 8l & SÃem(J l) | g 0 &

In our case this results in the final nonclassical system state, which is the

entangled product of e8, n 8 states and disjoint em field states

| fw & 5 o
l 5 0

cl | f & l 5 | f & a 1 | f & 0 5 o
l 5 1

Mw(e 8l , n 8l ) | e 8l & | n 8l & | g f & l 1 M0 | e & | n & | 0 &

(6)

where | g f & l 5 SÃem(J l) | 0 & The sum over l means the integral over the correlated

final e8, n 8 momenta p 8l , p 8l n . M0 is the zero-angle amplitude of particles not

scattering. All the partial phases f l are infinite; moreover, as follows from

(3), their differences d lm are divergent as must be the case for the disjoint states:

d lm 5 # dkÄ [Jl*m (k)J l
m (k) 2 J m*m (k)J m

m (k)]

2(2 p )3 5 F ( w lm) # dk0

k0

where w lm is the angle between p8l , p8m. By this reason in the limit t 5 ` this

process is formally completely irreversible, because the T-reflection of the

sum of such states with indefinite relative phases produces a new state

completely different from the initial one.

Then, as already mentioned, for such a disjoint state any measurement
of an arbitrary Hermitian BÃwill give ^ f0 | BÃ| f & a 5 0. This means that we have

obtained in a QED-based model a final disjoint state with a finite total energy.

Its components | f & 0 and | f & a correspond to the different values of the electron

polarization l e which we intended to measure. As a result these states have



406 Mayburov

all the observable properties of the mixed state which have to appear after

this measurement. Note that this result has been obtained for the complete

final state without averaging over some subsystem, or regarding it as an
unmeasurable environment (Zurek, 1982). Formally this is the main result

of our paper; however, it is important to discuss also practical aspects of

continuous photon spectral measurements and possible developments of QFT

models for real solid-state detectors.

In practice BÃcan only be a bounded operator in HF , because only

this case corresponds to photon measurements by finite detector ensemble
(Itzykson and Zuber, 1980). Note that practical direct IT observation is

impossible even between a single photon | k & and the vacuum states, as follows

from photocounting theory (Glauber, 1963). It has been shown that all em

field operators BÃg which can be measured are functions of nÃ( l , k) 5 a ( l ,

k) a +( l , k), the photon number operators. But for such operators we have

^ k | BÃg | 0 & 5 0, and this also holds true for any state with unsharp photon
number. To reveal the presence of IT for a single photon state the only

possibility is to perform a special premeasurement procedure (PP), namely,

| k & must be reabsorbed by its source Q g and the interference of the source

states studied for some new observable of the form BÃs 5 a(k)BÃ. Yet, to our

knowledge there is no general proof that such PP always exists for multiphoton
states with continuous spectra. The famous recurrence theorem is true only

for discrete spectra (Bocchieri and Loinger, 1957).

Such PP certainly does not exist for | fw & states at t 5 ` , due to the

discussed loss of the relative phases between its parts | f & l. Clearly, if the

phase differences d lm are infinite for the sum of the em field states, then their

reabsorption will mean that this loss of coherence is transferred to the Q g

state, which thereafter will become disjoint. But we will give qualitative

arguments that such PP probably do not exist also for the states taken at a

finite time.

As an example, we will consider a PP layout in which the scattered e,

n are reflected by some very distant mirrors back to the interaction region

where they can rescatter again. Then we calculate the electron radiation
appearing after three consequent collisions, taking into account also the

ª internalº electron radiation between the collisions. The Low theorem demon-

strates that the em radiation field in the infrared limit for any process is

defined solely by the current calculated between the asymptotic in-and out-

momentum eigenstates, thereby neglecting intermediate states (Low, 1958).

This means that we can apply the calculations of the method described above
and in particular the resulting formula (6).

Then the initial em field state restoration is defined by the ^ 0 | SÃem (J l) | 0 &
amplitude of the | 0 & restoration in the e, n rescattering, which is nonzero

only for J m (k) 5 0 as follows from (2). Hence, the electron in- and out-
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momenta must coincide, and from energy conservation the same must be

true for n . So, we have to calculate the probability P for a second-order weak

process i ® v8l ® v r
l ® i. Here v8l are all possible intermediate states and

v r
l are the reflections of v8l in nondispersive mirrors. The reflection amplitude

is supposed to be Mr 5 exp(i f c) and can be suppressed. The calculation is

simplified by the spherical symmetry of weak scattering, and we obtain,

omitting some unessential details,

P 5 # | Mw(e 8l , n 8l )Mw(e r
l , n r

l ® e, n ) | 2dov

# # | Mw(e 8l , n 8l )Mw(e r
l , n r

l ® ef, n f) | 2dovdof

5
| Mw | 4ov d 3( pf 2 pe)

| M8w | 4ovof

5 0

Here ov and of denote the phase spaces of the intermediate and final e, n
states, which are reduced to the corresponding electron phase spaces. Hence,

ov and of are isomorphic to the sphere with the radius r 5 | pe | on which the

density of the final states is nearly constant. MÅ
w and MÅ

w8 are the expectation

values of Mw over the indicated phase spaces, which are assumed to be of

the same order. The restoration of the initial state corresponds to a single

point r0 5 pe on this surface. Each infinitely close point to r0 corresponds

to another Hilbert space with an infinite number of soft photons. So the

zero probability of the initial state restoration can be simply interpreted

geometrically: r0 is a single point in the phase space which has measure zero.

Although these arguments are qualitative in character, they demonstrate that

the irreversibility of the disjoint state evolution is connected with the principal

uncertainty of scattering angles in QM.

It is important to note that such an effect may exist also for the rescatter-

ing of the photon states with finite NDF and continuous spectra which belong

to HF. When the proof of the latter is completed, on which we are presently

working, the conditions of the observation of collapse in QED can become

tight or and not demand the use of UN representations and disjoint states.

In QFT the situations when the particular dynamics makes some opera-

tors unobservable are well known. The most famous example is QCD color

confinement, where colored charge is the analog of electric charge and the

QCD Hamiltonian contains an infrared singularity induced by the massless

bosonic gluon (Itzykson and Zuber, 1980). Any attempt to measure colored

operators, for example, the quark or gluon momentum, results in a soft gluon

production. In a very short time this colored quantum fuses into some number
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of colorless hadrons and consequently only the hadron operators are the real

observables of this theory.

In practice the measurement is performed on localized states (wave
packets) and lasts only a finite time. It has been shown that any localized

charged state includes an unlimited number of soft photons (Buchholz et al.,
1991). This supposes that the structure of localized and nonlocalized states

asymptotically coincides and their evolution will result in analogous disjoint

final states.

Real detectors are localized solid objects and the considered model
cannot be applied directly. Nevertheless, QFT methods have been used very

successfully in solid-state physics, and so we can hope that they will permit

us to describe the collapse in real detectors. An example of such an approach

gives a simple model of the collapse induced by the ferromagnetic phase

transition (Mayburov, 1995).

It is well known that solid-state collective excitations interpreted as
massless quasiparticles have excitation spectra without a gap, i.e., infrared

divergences (Umezawa et al., 1982). These quanta interact with the em field,

hence, any excitation of a crystal in the vacuum is to relaxed by soft radiation.

The main mechanism may be the cascade phonon decay P ® P8 1 g . So

the excitation of a crystal by a measured energetic particle can result in a
new disjoint state of the crystal plus an external electromagnetic field. This

idea may also be applicable for a finite systems if its surface is regular and

may be regarded as a topological defect with an infinite NDF which results

in a special kind of boson condensation in the crystal volume (Umezawa et
al., 1978).

In conclusion, we have shown that the final states of e±n scattering in
the standard S-matrix limit reveal asymptotically the properties of the mixed

state, i.e., the collapse has been performed. This seems not surprising since the

classical features of electron bremsstrahlung states have often been stressed

(Kibble, 1968a,b). In addition this model can formally describe the radiation

decoherence process of the special kind when the system being measured

generates its environment from an initial vacuum.
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